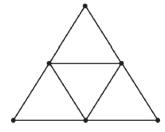
Ingeniería Matemática

- 1. En el plano XY la curva con ecuación paramétrica $x=2\cos(t)$ y $y=2\sin(t),~0\leq t\leq \pi/4,$ tiene longitud:
 - (a) 3
 - (b) π
 - (c) $\frac{3}{2}$
 - (d) $\frac{\pi}{2}$
- 2. Cuál de las siguientes es una ecuación de la recta tangente al grafo de $y = x + e^x$ en x = 0?
 - (a) y = x + 1
 - (b) y = x + 2
 - (c) y = 2x
 - (d) y = 2x + 1
- 3. Dos eventos son independientes
 - (a) si la probabilidad de la unión de los dos eventos es igual a la suma de las probabilidades de los dos eventos.
 - (b) si la probabilidad de la unión de los dos eventos es igual al producto de las probabilidades de los dos eventos.
 - (c) si la probabilidad de la intersección de los dos eventos es igual a la suma de las probabilidades de los dos eventos
 - (d) si la probabilidad de la intersección de los dos eventos es igual al producto de las probabilidades de los dos eventos
- 4. ¿Cuáll de los siguientes círculos tiene la mayor cantidad de puntos de intersección con la parábola $x^2 = y + 4$?
 - (a) $x^2 + y^2 = 1$
 - (b) $x^2 + y^2 = 9$
 - (c) $x^2 + y^2 = 16$
 - (d) $x^2 + y^2 = 25$
- 5. $\int_{-3}^{3} |x+1| dx =$
 - (a) 0
 - (b) 10
 - (c) 15
 - (d) 20
- 6. Dadas las siguientes integrales

$$J = \int_0^1 \sqrt{1 - x^4} dx$$


$$K = \int_0^1 \sqrt{1 + x^4} dx$$

$$L = \int_0^1 \sqrt{1 - x^8} dx$$

¿Cuál de las siguientes afirmaciones es verdadera?

- (a) J < L < 1 < K
- (b) J < L < K < 1

- (c) L < J < 1 < K
- (d) L < 1 < J < K
- 7. Sea V el espacio vectorial de las matrices reales de orden 2×3 y sea W el espacio vectorial de los vectores columna 4×1 con entradas reales. Si T es una transformación lineal sobreyectiva de V en W, entonces la dimensión del subespacio $\{\mathbf{v} \in V : T(\mathbf{v}) = 0\}$ es
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 5
- 8. La esperanza de una variable aleatoria continua \mathbf{X} se calcula por medio de
 - (a) la derivada de x por la función de distribución de X.
 - (b) la derivada de x por la función de densidad de X.
 - (c) la integral de x por la función de distribución de X.
 - (d) la integral de x por la función de densidad de X.
- 9. Suponga que A y B son matrices $n \times n$ no singulares con n > 1 e I la matriz identidad de orden n. Si A y B son matrices similares, ¿Cuáles de las siguientes afirmaciones son verdaderas?
 - I. A 2I y B 2I son matrices similares.
 - II. A y B tienen la misma traza.
 - III. A^{-1} y B^{-1} son matrices similares
 - (a) Solo I.
 - (b) Solo II.
 - (c) Solo III.
 - (d) A la vez I y III.
- 10. Sea A una matriz 2×2 con entradas reales. ¿Cuáles de las siguientes afirmaciones son verdaderas?
 - I. Todas las entradas de A^2 son no negativas.
 - II. El determinante de A^2 es positivo.
 - III. Si A tiene dos valores propios distintos, entonces A^2 tiene dos valores propios distintos.
 - (a) Solo I.
 - (b) Solo II.
 - (c) Solo III.
 - (d) A la vez II y III.
- 11. La siguiente figura muestra un grafo no dirigido con seis vértices.

Ingeniería Matemática

Para obtener un árbol generador (subgrafo conexo sin ciclos con todos los vertices del grafo) , se deben borrar un número adecuado de aristas. ¿Cuántas aristas del grafo de la figura se deben borrar para obtener un árbol generador?

- (a) Una
- (b) Dos
- (c) Tres
- (d) Cuatro
- 12. Si x es un número real suficientemente mayor que 1. ¿Cómo debería calcularse la expresión

$$\sqrt{x+\frac{1}{x}}-\sqrt{x-\frac{1}{x}}$$

para que ésta sea más estable numéricamente?

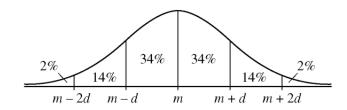
(a)
$$\frac{2}{x\left(\sqrt{x+\frac{1}{x}}+\sqrt{x-\frac{1}{x}}\right)}$$

(b)
$$\sqrt{x+\frac{1}{x}} - \sqrt{x-\frac{1}{x}}$$

(c)
$$\sqrt{2x - 2\sqrt{x + \frac{1}{x}}\sqrt{x - \frac{1}{x}}}$$

(d)
$$\frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{\sqrt{x}}$$

- 13. Sea la función real f definida por $f(x) = e^{-x^2} x$; entonces la primera iteración del método de Newton, empezando desde x = 1, da como resultado un valor aproximado de:
 - (a) 1.3642
 - (b) 0.6358
 - (c) -0.3254
 - (d) 0.2119
- 14. Dado los siguientes programas lineales que dependen de dos parámetros reales, α y β


$$(P)_{\alpha,\beta} = \begin{cases} Max & z = 2x_1 + x_2 \\ s.a \\ \alpha x_1 + \beta x_2 \le 2 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Entonces todos los valores de los parámetros α y β para los cuales los problemas $(P)_{\alpha,\beta}$ son no acotados, son tales que:

- (a) $\alpha = 0$ y $\beta < 0$
- (b) α y β son reales cualesquiera
- (c) $\alpha \leq 0$ y $\beta \leq 0$
- (d) $\alpha > 0$ y $\beta > 0$
- 15. Suponga que X es una variable aleatoria discreta en el conjunto de enteros positivos, tales que para cada entero positivo n, la probabilidad de que X = n es $\frac{1}{2^n}$. Si Y es una variable aleatoria con la misma distribución de probabilidad y X e Y son independientes, ¿cuál es la probabilidad de que el valor de al menos una de las variables X o Y sea mayor que 3?
 - (a) $\frac{1}{64}$

Ingeniería Matemática

- (b) $\frac{15}{64}$
- (c) $\frac{1}{44}$ (d) $\frac{3}{8}$
- 16. La siguiente figura representa una distribución normal con media m y desviación estandar d, incluyendo porcentajes aproximados de la distribución correspondientes a las seis regiones mostradas.

Suponga que la altura de una población de 3000 pingüinos adultos está distribuida de manera aproximadamente normal con media 65 centímetros y desviación estándar de 5 centímetros. De manera aproximada, el número de pingüinos que tendrán entre 65 y 75 centímetros de altura será:

- (a) 1440
- (b) 969.2
- (c) 2460
- (d) 2820
- 17. Una ecuación diferencial de orden n tiene
 - (a) al menos una solución.
 - (b) exactamente n soluciones linealmente independientes.
 - (c) al menos n soluciones linealmente independientes.
 - (d) n soluciones no necesariamente independientes.
- 18. El operador diferencial $L = (D-2)(D^2+1)$ anula a
 - (a) $2e^{-2x} + 3\cos(x) \sin(x)$
 - (b) $2e^{2x} + 3\cos(x) \sin(x)$
 - (c) $2e^{-x} + 3\cos(2x) \sin(2x)$
 - (d) $2e^{-x} + 3\cos(x) \sin(x)$
- 19. El método de Frobenius sirve para hallar
 - (a) soluciones de ecuaciones diferenciales alrededor de puntos singulares.
 - (b) soluciones de ecuaciones con coeficientes variables.
 - (c) soluciones complementarias de ecuaciones diferenciales homogéneas.
 - (d) soluciones particulares de ecuaciones diferenciales no homogéneas.
- 20. En un cultivo de levadura la rapidez de cambio es proporcional a la cantidad existente. Si la cantidad de cultivo se duplica en 4 horas. ¿Qué cantidad puede esperarse al cabo de 16 horas, con la misma rapidez de crecimiento?
 - (a) $2x_0$
 - (b) $32x_0$
 - (c) x_0
 - (d) e^{x_0}