ESCUELA POLITÉCNICA NACIONAL

PROGRAMA DE ESTUDIOS POR ASIGNATURA

Versión V10.8.1

UNIDAD ACADÉN Facultad de Ciencias	
CARRERA: Física	
EJE DE FORMACI <mark>Profesional</mark>	
ASIGNATURA: Física Experimental	
CÓDIGO: FSC755 PENSUM:	2010
SEMESTRE REFERENCIAL: 7 NRO. CRÉDITOS:	5
TIPO: Obligatoria: x Optativa:	
HORAS SEMANA Teóricas: 1 Prácticas de Laboratorio/Ejercicios:	4
TOTAL DE HORA Teóricas: 14 Prácticas de Laboratorio /Ejercicios: Actividades de Evaluación:	64
ASIGNATURAS REQUISITOS: FSC652 Laboratorio de Física Atómica y Molecular	
ASIGNATURAS COREQUISITIOS: Ninguna	
OBJETIVOS DEL CURSO:	
De conocimientos: Aplicar los conocimientos adquiridos para el diseño y la interpretación de	
experimentos avanzados de física. De destrezas: Ensamblar un experimento de acuerdo al diseño realizado y describir su	
comportamiento en base de conceptos físicos.	
De valores y actitudes: Interpretar objetivamente los resultados experimentales. Indagar el	

CONTENIDOS:

Capítulo 1: Fotoacústica

Capítulo 2: Espectroscopía óptica de absorción, emisión y fluorescencia

comportamiento y las características físicas de sistemas mediante diseños experimentales.

Capítulo 3: Interferometría

Capítulo 4: Difracción de rayos x

Capítulo 5: Física del estado sólido y microscopía electrónica

PRACTICAS DE LABORATORIOS/EJE	RCICIOS:		
Tópico 1: Experimentos de foto	acústica		
Tópico 2: Espectroscopía de al	Espectroscopía de absorción		
Tópico 3: Espectroscopía de emisión			
Tópico 4: Espectroscopía de flu	Espectroscopía de fluorescencia		
Tópico 5: Interferómetro de Ma	Interferómetro de Mach-Zehnder		
Tópico 5: Interferómetro de Fat	Interferómetro de Fabry-Perot		
Tópico 6: Experimentos de difra	co 6: Experimentos de difracción de rayos X		
Tópico 7: Experimentos de mic	Experimentos de microscopía electrónica		
BIBLIOGRAFÍA BÁSICA:			
Moore J.H., Davis C. C., C 1 University Press, 2009	Coplan M.A., Building Scientific Apparatus, Cam	nbridge	
Cremers D.A., Radziemski L.J. Handbook of Laser Induced breakdown 2 spectroscopy. John Wiley & Sons, 2006			
Andrews D.L., Demidov A Academic/Plenum publise	a.A. An introduction to laser spectroscopy, Kluwers, 2002	er	
BIBLIOGRAFÍA COMPLEMENTARIA:			
MELISSINOS, ADRIAN. Experiments in Modern Physics. 1st and 2nd ed. Burlington, MA: Academic Press, 1966 and 2003			
PRESTON, DARYL, and ERIC DIETZ. The Art of Experimental Physics. New York, NY: John Wiley & Sons, 1991.			
Analysis for the Physical S	and D. KEITH ROBINSON. Data Reduction and Sciences. 3rd ed. Boston, MA: McGraw-Hill, 200		
3 ISBN: 9780072472271.			
SUGERENCIAS DIDÁCTICAS:		3	
Exposición oral (clase magistral)x	Exposición audiovisual	Х	
Ejercicios dentro de clase	Ejercicios fuera del aula		
Conferencias (profesores invitad	Lecturas obligatorias		
Prácticas de laboratorio x	Prácticas de campo		
Trabajos de investigación	Desarrollo de un proyecto		
Otras	, ,		
FORMAS DE EVALUAR:			
Pruebas parciales	Examen final		
Trabajos y tareas fuera del aula x Asistencia a prácticas x		X	
Participación en clase x	Otras		

REQUISITOS DE EXPERIENCIA Y CONOCIMIENTOS DEL PROFESOR:

Ph.D. con experimencia en espectroscopía óptica aplicada.

Capacitación o experiencia en docencia a nivel superior.

REQUERIMIENTOS DE INFRAESTRUCTURA:

Experimentos de fotoacústica

Láser pulsado alta intensidad

Material piezoeléctrico

Celdas fotoacústicas

Micrófono de gas monodireccional

Espectroscopía de absorción

Diodos láser

Amplificador Lock-in

Oscilosocopio 200 MHz

Controlador corriente y temperatura para diodos láser

Cubetas de cuarzo para absorción

Espectroscopía de fluorescencia

Fuente de zenón de alta intensidad

Monocromadores

Tubo fotomultiplicador con su fuente de voltaje

Espejos de primera cara

Cubetas de cuarzo para fluorescencia

Cubetas de plástico desechables

Interferometría

Monturas

Monturas moviles graduadas micrométricas

Monturas giratorias graduadas

Lentes

Espejos semiplateados

Espejos de primera cara

Fotodetectores y fotomultiplicadores

Láser continuo de He-Ne

Rieles ópticas

Experimentos de difracción de rayos X

Estándares de materiales cristalinos y cerámicos