ESCUELA POLITÉCNICA NACIONAL

PROGRAMA DE ESTUDIOS POR ASIGNATURA

UNIDAD ACADÉMICA:	Facultad de	Ciencias			
CARRERA:	Matemática				
EJE DE FORMACIÓN:	Profesional				
ASIGNATURA:	Teoría de Probabilidades				
CÓDIGO:	MTM634	PENSUM:	2010		
SEMESTRE REFEREN	CIAL:	6 NRO. CRÉDITOS:	4		
TIPO:	Obligatoria:	x Optativa:			
HORAS SEMANALES:	Teóricas:	4 Prácticas de Laboratorio/Ejercicios:			
TOTAL DE HORAS:	Teóricas:	56 Prácticas de Laboratorio /Ejercicios: Actividades de Evaluación:	0 8		
ASIGNATURAS REQUI Teoría de la Medida	SITOS:				
ASIGNATURAS CORE	QUISITIOS:				

OBJETIVOS DEL CURSO:

Al terminar el curso el estudiante estará en capacidad de:

- 1. Presentar, en forma sistemática y rigurosa, los fundamentos teóricos de esta disciplina matemática, encargada de estudiar las leyes que gobiernan los fenómenos aleatorios.
- 2. Utilizar las herramientas creadas, bajo el enfoque aleatorio, en las múltiples aplicaciones prácticas que surgen en el ámbito de las mismas ciencias físico-matemáticas, la ingeniería, las ciencias sociales, la economía, las finanzas y demás ciencias naturales.
- 3. Reflexionar sobre la diferencia existente en el tratamiento de fenómenos determinísticos y de fenómenos aleatorios.

Teoría de Probabilidades

CONTENIDOS:

Capítulo 1: Fundamentos

- 1.1 Axiomática de Kolmogorov
- 1.2 Medidas de probabilidad sobre espacios medibles
- 1.3 Ejemplos

Capítulo 2: Variables aleatorias

- 2.1 Definiciones
- 2.2 Elementos aleatorios
- 2.3 Funciones de distribución
- 2.4 Tipos de funciones de distribuciones (absolutamente continuas, discretas y singulares)
- 2.5 Funciones de distribución de variables aleatorias que dependen de otras variables aleatorias

Capítulo 3: Esperanza matemática

- 3.1 Definiciones
- 3.2 Propiedades
- 3.3 Teoremas sobre convergencia
- 3.4 Principales desigualdades

Capítulo 4: Esperanza matemática condicional

- 4.1 Definiciones
- 4.2 Propiedades
- 4.3 Teoremas sobre convergencia
- 4.4 Varianza condicional
- 4.5 Ejemplos de cálculo de probabilidades, esperanzas y varianzas condicionales

Capítulo 5: Tipos de convergencia de sucesiones de variables aleatorias

- 5.1 Convergencia en probabilidad
- 5.2 Convergencia con probabilidad 1
- 5.3 Convergencia en distribución
- 5.4 Implicaciones entre tipos de convergencia
- 5.5 Lema de Borel-Cantelli

Capítulo 6: Funciones características

- 6.1 Propiedades
- 6.2 Teoremas de unicidad e inversión
- 6.3 Resultados que caracterizan a funciones que son funciones características
- 6.4 Caso multidimensional
- 6.5 Aplicaciones

Capítulo 7: Teoremas límites

7.1 Convergencia débil de medidas de probabilidad

Teoría de Probabilidades

- 7.2 Teoremas de convergencia
- 7.3 Ley débil de los grandes números
- 7.4 Teorema de límite central caso simple
- 7.5 Teorema de Poisson
- 7.6 Teorema de Lindeberg Feller

Capítulo 8: Series aleatorias

- 8.1 Leyes "cero o uno"
- 8.2 Convergencia de series
- 8.3 Ley fuerte de los grandes números
- 8.4 Ley del logaritmo iterado

Capítulo 9: Marchas aleatorias

- 9.1 Nociones básicas
- 9.2 Marchas simétricas
- 9.3 Ejemplos

Capítulo 10: Aplicaciones computacionales

- 10.1 Estudiar, mediante simulación, los principales teoremas límites
- 10.2 Dados conjunto de datos identificar la distribución de los mismos
- 10.3 Simular marchas aleatorias con tiempos de parada
- 10.4 Aplicar el método de Monte Carlo en modelos probabilísticos

PRÁCTICAS DE LABORATORIOS/EJERCICIOS:

Tópico 1:		
Tópico 2:		
Tópico 3:		
Tópico 4:		
Tópico 5:		

BIBLIOGRAFÍA BÁSICA:

- CHUNG K. L. A Course in Probability Theory Third edition, San Diego: Academic Press, 2001
- 2 SHIRYAYEV A. N. Probabilidad Segunda edición, Moscú: Nauka, 1989. (en ruso).

BIBLIOGRAFÍA COMPLEMENTARIA:

- GNEDENKO B. V. The Theory of Probability Fourth edition, New York: Chelsea Publishing Company, 1967.
- 2 Guía preparada por el profesor

SUGERENCIAS DIDÁCTICAS:

Teoría de Probabilidades

Exposición oral (clase magistral) Ejercicios dentro de clase Conferencias (profesores invitados) Prácticas de laboratorio Trabajos de investigación	x x x	Exposición audiovisual Ejercicios fuera del aula Lecturas obligatorias Prácticas de campo Desarrollo de un proyecto	x x				
Otras FORMAS DE EVALUAR: Pruebas parciales Trabajos y tareas fuera del aula Participación en clase	x x x	Examen final Asistencia a prácticas Otras	x x x				
NOTA: Para la evaluación se seguirá el Art. 56 del Reglamento respectivo REQUISITOS DE EXPERIENCIA Y CONOCIMIENTOS DEL PROFESOR:							
REQUERIMIENTOS DE RECURSOS 1. Bases de datos generados según o 2. Paquetes MATLAB, Excel y R.		tes leyes (trabajo por realizar)					
FECHA DE ELABORACIÓN DEL PROGRAM/ ENERO 2010							

RESPONSABLE: