ESCUELA POLITÉCNICA NACIONAL

PROGRAMA DE ESTUDIOS POR ASIGNATURA

Versión V10.8.1

UNIDAD ACADÉMICA:	Facultad de Ciencias					
CARRERA:	Ingeniería Matemática					
EJE DE FORMACIÓN:	Profesional					
NOMBRE DE LA ASIGNATURA:	Análisis Numérico para las Ecuaciones Diferenciales Parciales					
CÓDIGO:	IMT836	PENSUM:	2011			
SEMESTRE REFERENCIAL:		8 NRO. CRÉDITOS:	6			
TIPO:	Obligatoria: Laboratorio:	X Optativa:				
HORAS SEMANALES:	Teóricas:	5,5 Prácticas de Laboratorio/Ejercicios:	0,5			
TOTAL DE HORAS:	Teóricas:	77 Prácticas de Laboratorio/Ejercicios: Actividades de Evaluación:	8			
ASIGNATURAS PRE-REQUISITOS:						

Análisis Numérico II

Ecuaciones Diferenciales Parciales I

ASIGNATURAS CO-REQUISITOS:

Ninguna

OBJETIVOS DEL CURSO:

De conocimientos:

* Comprender las principales técnicas de aproximación de ecuaciones en derivadas parciales.

De destrezas:

* Analizar los esquemas de aproximación de ecuaciones en derivadas parciales y resolver numéricamente.

De valores y actitudes:

* Valorar la teoría de análisis numérico de ecuaciones en derivadas parciales como una herramienta fundamental para llevar a la práctica diferentes modelos matemáticos del mundo real.

CONTENIDOS:

Capítulo 1: Problemas con valores en la frontera en una dimensión

- 1.1 Un problema modelo
- 1.2 Método de Galerkin
- 1.3 Método de elementos finito
- 1.4 Ecuaciones de advección-difusión
- 1.5 Aplicaciones

Capítulo 2: Problemas con valores en la frontera elípticos

- 2.1 Un problema modelo
- 2.2 Aproximación por diferencias finitas
- 2.3 Formulación variacional de problemas elípticos
- 2.4 Método de elementos finitos
- 2.5 Estimación de errores de interpolación
- 2.6 Convergencia y estimación de errores
- 2.7 Aplicaciones

Capítulo 3: Problemas parabólicos

- 3.1 Aproximación por diferencias finitas
- 3.2 Aproximación por elementos finitos
- 3.3 Aplicaciones

PRÁCTICAS DE LABORATORIOS/EJERCICIOS:

Tópico 1:	Elementos finitos en dim=1
Tópico 2:	Diferencias finitas en dim=2
Tópico 3:	Elementos finitos en dim=2
Tópico 4:	Ecuaciones parabólicas

BIBLIOGRAFÍA BÁSICA:

Quarteroni, A. & Valli, A. Numerical approximation of partial differential equations, Springer 2008.

Grossmann, C. and Roos, H.G. and Stynes, M. Numerical treatment of partial differential equations, Springer 2007.

BIBLIOGRAFÍA COMPLEMENTARIA:

Quarteroni, A. and Sacco, R. and Saleri, F. Numerical Mathematics, Springer, 2007.

Atkinson, K. and Han, W. Theoretical numerical analysis: A functional analysis framework, Springer, 2009.

Análisis Numérico para las Ecuaciones Diferenciales Parciales

SUGERENCIAS DIDÁCTICAS:		_	
Exposición oral (clase magistral)	X	Exposición audiovisual	x
Ejercicios dentro de clase	Х	Ejercicios fuera del aula	х
Conferencias (profesores invitados)		Lecturas obligatorias	Х
Prácticas de laboratorio	х	Prácticas de campo	
Trabajos de investigación	х	Desarrollo de un proyecto	
Otras			
FORMAS DE EVALUAR:			
Pruebas parciales	х	Examen final	х
Trabajos y tareas fuera del aula	х	Asistencia a prácticas	
Participación en clase		Otras	

REQUISITOS DE EXPERIENCIA Y CONOCIMIENTOS DEL PROFESOR:

Doctor en matemática con experiencia en aproximación numérica de EDP.

REQUERIMIENTOS DE INFRAESTRUCTURA:

Aula de clase, recursos para exposición audiovisual (computadora-proyector) y laboratorio de computación con internet y equipado con software de cálculo científico (Matlab, Octave, Scilab y solvers varios)

FECHA DE ELABORACIÓN:

Julio de 2011

PROFESORES RESPONSABLES:

Profesores del área de Optimización del Departamento de Matemática de la EPN.