ESCUELA POLITÉCNICA NACIONAL

PROGRAMA DE ESTUDIOS POR ASIGNATURA

Versión V10.8.1

UNIDAD ACADÉMICA:	Facultad de Ciencias					
CARRERA:	Ingeniería Matemática					
EJE DE FORMACIÓN:	Básica					
ASIGNATURA:	Ecuaciones	s Difer	enciales Ordinarias y Aplicaciones			
CÓDIGO:	MAT346		PENSUM:	2011		
SEMESTRE REFERENC	CIAL:	3	NRO. CRÉDITOS:	6		
TIPO:	Obligatoria:	X	Optativa:			
HORAS SEMANALES:	Teóricas:	5	Prácticas de Laboratorio/Ejercicios:	1		
TOTAL DE HORAS:	Teóricas:	70	Prácticas de Laboratorio /Ejercicios: Actividades de Evaluación:	16 10		
ASIGNATURAS REQUIS Análisis Vectorial	SITOS:					
ASIGNATURAS COREC	UISITIOS:					

OBJETIVOS DEL CURSO:

De conocimientos:

Ninguno

- * Resolver ecuaciones diferenciales lineales a coeficientes constantes.
- * Conocer los teoremas de existencia y unicidad para las ecuaciones diferenciales lineales.
- * Usar la transformada de Fourier para resolver ecuaciones diferenciales ordinarias a coeficientes constantes.

De destrezas:

- * Modelar y resolver problemas donde se aplican ecuaciones diferenciales de primer orden.
- * Resolver problemas con valores iniciales para ecuaciones diferenciales ordinarias lineales a coeficientes constantes.

De valores y actitudes:

- * Aprender el respeto por la naturaleza y las leyes que la rigen.
- * Comprender la diferencia entre un modelo matemático, un modelo físico y la naturaleza.

CONTENIDOS:

Capítulo 1: Ecuaciones diferenciales ordinarias de primer orden

Capítulo 2: Modelamiento con ecuaciones diferenciales de primer orden

Capítulo 3: Ecuaciones diferenciales lineales. Teoría y aplicaciones.

Capítulo 4: Transformada de Laplace.

Capítulo 5: Solución de ecuaciones ordinarias mediante series.

Capítulo 6: Sistemas de ecuaciones diferenciales ordinarias.

PRÁCTICAS DE LABORATORIOS/EJERCICIOS:

Tópico 1:	Modelos con ecuaciones diferenciales de primer orden				
Tópico 2:	Modelos con ecuaciones diferenciales de primer orden lineales				
Tópico 3:	Modelos con ecuaciones diferenciales lineales de segundo orden				
Tópico 4:	Modelos con sistemas de ecuaciones diferenciales lineales				
Tópico 5:	Aplicación de la transformada de Laplace en la resolución de ecuaciones y sistemas de ecauciones diferenciales lineales				

BIBLIOGRAFÍA BÁSICA:

TESCHL G., Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics Volume XXX, American Mathematical Society Providence, Rhode Island, USA, 2011.

ZILL D., CULLEN, M. " Ecuaciones Diferenciales con problemas 2 con valores en la frontera", Séptima Edición, Cengage Learning, México, 2009.

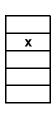
KREIDER D. & OTROS, "Ecuaciones Diferenciales", Fondo Educativo Interamericano, México, 1990.

AGARWAL R., O'REGAN D., An Introduction to Ordinary Differential Equations, Springer, 2008.

KREIDER D. Y OTROS., "Introducción al Análisis Lineal Tomo I, Fondo Educativo Interamericano, México, 1971

BIBLIOGRAFÍA COMPLEMENTARIA:

ROBINSON J., An Introduction to Ordinary Differential Equations, Cambridge University press, USA, 2004.


MURRAY R. SPIEGEL., "Ecuaciones Diferenciales Aplicadas", Prentice-Hall, Englewood Cliffs, 1983.

BRAUN, M., "Ecuaciones Diferenciales y las aplicaciones", Grupo Editorial, Iberoamérica, México, 1990.

SUGERENCIAS DIDÁCTICAS:

Exposición oral (clase magistral)
Ejercicios dentro de clase
Conferencias (profesores invitados)
Prácticas de laboratorio
Trabajos de investigación
Otras

<u>-</u>
Exposición audiovisual
Ejercicios fuera del aula
Lecturas obligatorias
Prácticas de campo
Desarrollo de un proyecto

Física General I

FORMAS DE EVALUAR:						
Pruebas parciales	Х	Examen final	х			
Trabajos y tareas fuera del aula	X	Asistencia a prácticas				
Participación en clase	X	Otras				

NOTA: Para la evaluación se seguirá el Reglamento respectivo

REQUISITOS DE EXPERIENCIA Y CONOCIMIENTOS DEL PROFESOR: Profesor especialista en el campo (Doctor en Matemática), con al menos 2 años de experiencia docente universitaria.

REQUERIMIENTOS DE RECURSOS:

Aula con pizarra y un proyector de imágenes.