ESCUELA POLITÉCNICA NACIONAL

DDOCDAMA DE ESTUDIOS DOD ASIGNATUDA

PROGRAMA DE ESTUDIOS POR ASIGNATURA			
UNIDAD ACADÉMICA:	Facultad de	Ciencias	
CARRERA:	Física		
EJE DE FORMACIÓN:	Profesional		
ASIGNATURA:	Física Com	putacional II	
CÓDIGO:	FSC846	PENSUM:	2010
SEMESTRE REFERENCIAL:		8 NRO. CRÉDITOS:	6
TIPO:	Obligatoria:	x Optativa:	
HORAS SEMANALES:	Teóricas:	6 Prácticas de Laboratorio/Ejercicios:	
TOTAL DE HORAS:	Teóricas:	84 Prácticas de Laboratorio /Ejercicios: Actividades de Evaluación:	0 12
ASIGNATURAS REQUISITOS Física Computacional I	S:		
ASIGNATURAS COREQUISIT	ΓIOS:		
OBJETIVOS DEL CURSO: Enseñar al estudiante los principales métodos de simulación en Física, y su aplicación a la resolución de problemas.			

CONTENIDOS:

Capítulo 1: Análisis espectral

- 1,1 Transformada de Fourier discreta
- 1,2 Transformada rápida de Fourier
- 1,3 Transformada de Fourier en varias dimensiones
- 1,4 Análisis de wavelets
- 1,5 Proyecto: análisis espectral de un péndulo forzado

Capítulo 2: Ecuaciones diferenciales parciales

- 2,1 Método de diferencias finitas
- 2,2 Proyecto: campo de temperatura en una barra de desecho nuclear

Capítulo 3: Simulación por dinámica molecular

- 3,1 Métodos para sistemas de muchas partículas
- 3,2 Algoritmos de resolución de las ecuaciones de movimiento
- 3,3 Proyecto: Líquidos, gases y sólidos de Lennad-Jones

Física Computacional II

Capítulo 4:Simulación por métodos de monte carlo 4.1 Integración por el método de Monte Carlo 4,2 El algoritmo de Metrópolis 4,3 Proyecto: modelo de Ising en 2 dimensiones de ferromagnetismo Capítulo 5: Modelizacion de sistemas continuos 5,1 Ecuaciones de la hidrodinámica 5,2 El método de elementos finitos 5,3 El método variacional de Ritz 5,4 Proyecto: hidrodinámica y magnetohidrodinámica PRÁCTICAS DE LABORATORIOS/EJERCICIOS: Tópico 1: Tópico 2: Tópico 3: Tópico 4: Tópico 5: **BIBLIOGRAFÍA BÁSICA:** HOFFMAN J. D. Numerical Methods for Engineers and Scientist. Marcel Dekker Inc., 2001. PANG T. An Introduction to Computational Physics, 2nd ed. Cambridge University Press, 2006. KOONIN S. E. Computational Physics. The Benjamin Cummings Publishing Company, 1986. STOER J., BURLISCH R. Introduction to Numerical Analysis, 2nd ed., Springer-Verlag, 1992. BIBLIOGRAFÍA COMPLEMENTARIA: SUGERENCIAS DIDÁCTICAS: Exposición oral (clase magistral) Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula X Conferencias (profesores invitados) Lecturas obligatorias Prácticas de laboratorio Prácticas de campo Trabajos de investigación Desarrollo de un proyecto

FORMAS DE EVALUAR:

Otras

Pruebas parciales
Trabajos y tareas fuera del aula
Participación en clase

50%
Examen final
Asistencia a prácticas
Otras

REQUISITOS DE EXPERIENCIA Y CONOCIMIENTOS DEL PROFESOR:

Físico con experiencia en manejo de software afín y en modelización y simulación en computadora.

REQUERIMIENTOS DE INFRAESTRUCTURA:

Física Computacional II

Aula y laboratorio computacional